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Abstract

During the last years, technology have experienced a prominent advance in medical

devices: devices that are able to make a diagnosis. One of these devices is a melanoma

detection application using camera images. Nevertheless, those images may suffer

some artifacts that could be avoided or at least mitigated using preprocessing tech-

niques. In this project three preprocessing techniques are evaluated: illumination

nonuniformity removal, hair removal and superresolution.
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Chapter 1

Introduction

The skin is the largest organ in the body [34]. It works not only as a first barrier

for the immune system but also as a sensor that measures temperature, pressure

and humidity. It helps humans gather information from the surroundings and at the

same time the skin protects humans from the environment. Nevertheless, although

it is very important, the skin is affected by some diseases, cancer being one of the

deadliest ones [33]. Although not one of the most common cancers, the presence of

this cancer has increased during the two decades [3]. In fact, the average death rate

for diagnosed melanomas is around 12% [35], but if melanoma is detected in early

stages, the survival rate could be up to 95% [17],[16].

This is why early detection is key to prevent as many deaths as possible. The ob-

jective of several medical melanoma detection approaches has been to look for specific

features doctors look for. For example, the ABCD rule [36] looks for: Asymmetry,

Border smoothness, Color and Diameter or Differentiation.
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In some cases, E is also added as ”evolution”. If the mole changes in size, shape

and color, it is more likely to be a melanoma. Nevertheless, the average diagnostic

accuracy for visual detection is only 58 % and about 30 % for inexperienced physician,

i.e., general dermatologists not specialized in dermoscopy [8],[10]. The future of

melanoma detection comes from the automatization of the detection process. Once

it is known what to look for, for example the ABCD rule, the idea is to automatize

the process in such a way that a machine is able to detect features that belong to

melanomas and decide if a given mole is a melanoma or not. Furthermore, it will be

even more beneficial if the machine is portable, affordable and easy to use.

For this reason, during the last 10 years, the Biomedical Imaging Lab at the

University of Houston has developed a smartphone application that is able to detect

melanomas [38] from pictures taken with the phone and only using the phone’s

computing capabilities [42],[43],[48]. This application has several advantages against

other melanoma detection systems [14],[4]:

• Price: This are cheaper.

• Mobility: This system is portable.

• Noninvasive: Because the system relies on image processing (pictures of the

skin) is a noninvasive system.

This idea has also been adapted to detect other types of lesions, such as Buruli ulcer

[19]. This computerized analysis procedure used different stages to decide if a lesion

is a melanoma: several segmentation algorithms with a scoring system to decide
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the best one; feature extraction (based on color, shape, texture, structure,...) and

selection; and partial classification and decision-fusion [49]. In this thesis another

stage has been improved, preprocessing stage. More specifically superresolution,

nonhomogeneous illumination removal and hair removal are implemented and tested.

The project is divided into 5 chapters:

• Chapter 2 shows the objectives of this project.

• Chapter 3 shows the theoretical bases of the algorithms used.

• Chapter 4 shows the conclusions, positive and negative aspects of the algo-

rithms and future work to do.

• Chapter 5 shows the budget required for this project.

This project has been developed at the University of Houston under the super-

vision of Prof. George Zouridakis. He is a Professor and Director of the Biomedical

imaging Lab; Engineering Technology; Computer Science; and Electrical and Com-

puter Engineering at University of Houston, Houston, Texas. The supervisor in Spain

has been Dr. Adam Podhorski.
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Chapter 2

Objectives

The objective of this thesis is to find algorithms in the literature and evaluate their

performance, more specifically:

• Superresolution techniques for augmenting the resolution of the images.

• Nonhomogeneous illumination correction.

• Hair removal.

This thesis analyzes each one of these issues, as well as implementation and

improvement to currently existing methods and the performance analysis of each

one of those methods.
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Chapter 3

Methods

In this chapter, the different methods used for obtaining a superresolution image,

along with procedures for nonhomogeneous illumination correction and hair removal

are reviewed.

3.1 Superresolution

Superresolution (SR) is a technique that uses different sets of information to create

high resolution pictures [31]. Those sets of information are usually low resolution

pictures (in this thesis this is used) but in some cases a combination of low resolution

pictures and infrared data or low resolution pictures and proximity data are used [26].

It must be taken into account that the superresolution explained here is different

from the resolution that uses only one picture to create a higher resolution picture
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[15]. The main difference is that those techniques are aimed to create pictures with

more information than the original pictures, while the superresolution techniques

that use only 1 image estimate the value of new pixels from currently existing pixels,

but the information they contain is the same as the original one.

The main idea is that the bigger the resolution of the image, the more details of

the mole are going to be available and the more accurate the diagnosis is going to

be.

The first thing that was found when the literature was reviewed was that super-

resolution was used almost exclusively for objects that were relatively far, usually

when some details were wanted and they were too pixeled.

Figure 3.1: Example of a low resolution image in which the text is unreadable [7]

As an example, Figure 3.1 contains a part of a bigger image. Because this picture

has been taken from a great distance, the text is unreadable. Taking several pictures

(a total of 40) of the same scene and applying superresolution techniques, Figure 3.2

was obtained.

As it can be seen, although there are some artifacts, after superresolution has

been applied, it is possible to read what is written.
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Figure 3.2: Superresolution image after processing the picture in Figure 3.1

SR techniques combine information from different pictures to obtain one pictures

with more information than the others. Because of this, it is assumed that different

images contain different information. If the images do not contain different infor-

mation, that means that they are the exact same picture and the result obtained is

not going to be better than a picture obtained using single image superresolution

techniques [15].

Different images are formed from taking several pictures of the same object by

rotating and moving the camera. While this hypothesis is true when humans take

a picture with a camera they are holding, it is not true when a machine does it or

when low resolution images are simulated.

Usually, all the superresolution algorithms contain 2 steps: Image registration

and Image combination. The first step aligns all the images because all the images

are shifted and/or rotated respect to each other. Once they are aligned, information

combination algorithms are used to obtain the high resolution images.

There are several techniques that implement superresolution. During the first

7



stages of the research, a user-friendly GUI was found. This GUI done by Ecole Poly-

technique Federale de Lausanne (EPFL) contains several superresolution algorithms[41],

[21], [25], [28], [39], [20], [47], [32].

Figure 3.3: GUI for superresolution

In this GUI (Figure 3.3), several motion estimation and superresolution algo-

rithms are available.

In order to see which combination of motion estimation and superresolution is

the best for this particular case a synthetic melanoma was created. This synthetic

melanoma, shown in Figure 3.4, contains several colors, high and low spatial fre-

quency components and different shapes.

From this image, that was used as the ground truth, several simulated pictures

were created. Those pictures are smaller, rotated and shifted versions of Figure 3.4.

Notice that Figures 3.5, 3.6, 3.7 and 3.8 are very similar (because all of them come

8



Figure 3.4: Synthetic HR image used in simulations

from Figure 3.4) but different (meaning that contain different information). The

rotation and shift of the low resolution images was obtained randomly.

Figure 3.5: Synthetic LR image simulating a picture from Figure 3.4 1

Once the simulated pictures were obtained, the next step was to use all the

possible combinations of motion estimation and superresolution algorithms.

Because there were 4 motion estimation and 9 different superresolution algorithms

(5 simple algorithms and 1 algorithms with 2 optional features), there were a total

9



Figure 3.6: Synthetic LR image simulating a picture from Figure 3.4 2

Figure 3.7: Synthetic LR image simulating a picture from Figure 3.4 3

of 36 possible combinations.

Once all the combinations were run, the results were compared with the origi-

nal high resolution image using the Mean Root Square Error (MRSE) between the

original and the results of the SR algorithm.

The best results were obtained by using the combination of Keren [21] motion

estimation and interpolation algorithms. The Keren algorithm calculates the rotation

and horizontal and vertical shifts required to align the images.
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Figure 3.8: Synthetic LR image simulating a picture from Figure 3.4 4

Once the shift and rotations are known, the next method can be used, interpo-

lation. Interpolation is usually used in image processing to calculate the value of

some pixels when the image’s size changes. For example, if larger images want to

be created, that means it is necessary to first create new pixel values. The only

information that can be used for creating new pixel values is the value of the pixels

that are already known.

3.1.1 Keren subpixel displacement estimation and Interpo-

lation

One way of creating these new pixels is to assign the value of the closest pixel. This

is called nearest-neighbor interpolation.

Figure 3.9 shows an example of nearest-neighbor interpolation. For example for

the pixel at (2, 1) it can be seen that the value of the pixel is around 5, represented

by the orange color. When the nearest-neighbor algorithm is used to increase the

11



Figure 3.9: Nearest-neighbor interpolation example [46]

number of pixels of the images, all the new pixels created in x = (1.5, 2.5) and

y = (0.5, 1.5) will have the same value as the pixel at (2, 1), which is 5. This is

why there is an orange square which has the pixel at (2, 1) as the center; that square

represents the points that are closer to (2, 1) than to any other pixel. In the particular

case that a pixel needs to be created in the exact boundary between two pixels, a

decision needs to be made: give it the value of one pixel or the value of the other.

As long as the boundary rule is the same in the entire picture, the result will not be

the same, but will be equally valid.

Another possible method is to use bilinear interpolation. In the case of bilinear

interpolation, the value of the new pixel is not given by the value of the closest pixel

but as a combination of the values of the 4 closest pixels, depending on the distance
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between the created pixel and the original ones.

Due to the fact that a grayscale image can be represented as a plane, it is easy

to see that any new pixel that can be created is going to be contained in a square

formed by the closest four pixels (obviously, a pixel is generated outside the edges

of the images, this assumption is not going to be true). Those 4 pixels are the ones

taken into account when the value of the new pixel is computed.

But, of course, each original pixel is not going to contribute the same to the

value of the interpolated pixel; the distance between the interpolated pixel and the

original pixel is going to determine the weight of this pixel to the final value of the

interpolated one. In other words, the closer a pixel wants to be created from an

already existing one, the more similar both are going to be.

Figure 3.10: Bilinear interpolation example [45]

In Figure 3.10 an example of bilinear interpolation is shown. If a pixel is created

exactly at the same distance from 4 pixels, its value is going to be an average of the

4. If a pixel is created really close to another pixel, their values are going to be very
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similar. This is why the colors around an original pixel are very similar and they

become more different once the generated pixel gets away from a pixel.

Finally, the last interpolation method that is going to be discussed here is bicubic

interpolation. The main concept behind bicubic interpolation is the same as bilinear

interpolation, but the difference is that while in the bilinear interpolation 4 pixels

(2 × 2) were used to generate the new one, in the bicubic interpolation 16 (4 × 4)

are used. Of course, in this case not only the distances between one pixel and the

other are taken into account , but also the value of others pixels. This is why bicubic

interpolation takes more time than bilinear, but also gives better results.

Figure 3.11: Bicubic interpolation example [44]

In Figure 3.11 it can be seen now that the transition between pixels is smoother.

The function that represent the surface will have as an input the position and values

of the pixels. It must be taken into account that the surface values will have exactly

the value of the pixels at the position of the pixels.

When using interpolation with one image,”superpixeled” images are created, but
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not SR images. The information contained inside the Low Resolution (LR) image

and the SR image is the same. This makes sense, because only used the information

contained in the LR image to create the new pixels has been used.

Usually, when image registration is performed, the images are rotated, shifted

and scaled to align them to a reference, losing part of the information of the image.

Some other times, it can be assumed that there is an infinite amount of space and

one image after the other can be overlaid until all the information is on the same

space (as it can be seeing in Figure 3.12).

Figure 3.12: Image registration assuming an infinite amount of space [30]

Another concept that needs to take into account is that interpolation does not

only work with a regular data grid, it also works with irregular data grids too.

In all the examples shown before, the distance between all the original pixels was

the same and this makes sense when images are used; the pixels in an image are

regularly distributed.

Nevertheless, images can be represented as a set of points in a 3D space. The
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horizontal and vertical distances could be the value of the x and y axis, while the

value of the pixel’s intensity could be the value of the z axis.

The benefit of thinking of pixels as points in the space is that as between two

neighboring pixels there could be no pixel, but between two scattered neighboring

points in a space there could be infinite points.

The registration parameters were calculated using Keren’s subpixel displacement

estimation algorithm [21]. The idea behind this algorithm is that two images of the

same object are identical apart from the displacement and rotation:

g(x, y) = f(xcos(θ)− ysin(θ) + a, ycos(θ) + xsin(θ) + b) (3.1)

Where a and b are the horizontal and vertical misalignments respectively, and θ is

the rotation. If the first two terms of the Taylor series are computed:

g(x, y) ≈ f(x+ a− yθ − xθ2/2, y + b+ xθ − yθ2/2) (3.2)

And then expanding f to the first term of its own Taylor series:

g(x, y) ≈ f(x, y) + (a− yθ − xθ2/2)
∂f

∂x
+ (b+ xθ − yθ2/2)

∂f

∂y
(3.3)

So the error function between g and f can be approximated to:
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E(a, b, θ) = [
∑

f(x, y) + (a− yθ − xθ2/2)
∂f

∂x
+ (b+ xθ − yθ2/2)

∂f

∂y
− g(x, y)]

(3.4)

Then, taking the derivation of this term for a, b and θ and making them 0, a 3

equation with 3 unknown system is obtained. In order to solve it this faster, a coarse-

to-fine structure of the image is used, called a Gaussian pyramid. The algorithm is

explained in Appendix A.

Due to the fact that the shift and rotation between images are known, all the

points of all the images can be represented into one space. If the rotation and shift

between the images is small in respect to the pixel shift, there will be clusters of

points. If, on the other hand, the rotation and shifts are large, the points will be

nonuniformly spread through all the space. Taking this into account, a regular data

grid could be created, using interpolation.

Figures 3.13a, 3.13b, 3.13c and 3.13d are 4 low resolution images of the same

object, in this case a castle.

Figure 3.14 shows the result of the superresolution interpolation algorithm. The

result shows higher spatial detail than the original low resolution images.
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(a) LR picture of a castle 1 (b) LR picture of a castle 2

(c) LR picture of a castle 3 (d) LR picture of a castle 4

Figure 3.13: LR pictures of a castle [5]

18



Figure 3.14: Castle SR result usign Keren estimation algorithm and Interpolation

3.1.2 Iterative process

Another superresolution algorithm used on lens free on-chip microscope [9] was ex-

plored, which was based on a different superresolution algorithm [6]. This algorithm

works taking into account models of the scene captured and the camera.

Modeling of the scene:

Figure 3.15: Continuous observation model resembling the physical process of image
acquisition [6]
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Figure 3.15 shows how the images are acquired. In the acquisition process there

are several steps.

1. Translation and rotation of the scene.

2. Blurring of the scene due to optics.

3. Discretization of the continuous scene.

4. Noise (added by several factors).

The reality that is being captured is o(x, y). After rotation and translation the

scene would be

ok(x, y) = o(xcosθk − ysinθk + hk, ycosθk + xsinθk + vk) (3.5)

where θk represents the rotation and hk and vk the horizontal and vertical transla-

tions, respectively, for the k-th observable frame. Assuming that the scene o(x, y)

does not change while all the frames are being observed, after rotation and transla-

tion, a blurring effect is applied to the scene, modeled as

õk(x, y) = ok(x, y) ∗ hc(x, y) (3.6)

where hc(x, y) is the continuous system Point Spread Function. Then the result

is sampled and noise is added.

yk(n1, n2) = õk(n1T1, n2T2) + ηk(n1, n2) (3.7)
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where T1 and T2 are the horizontal and vertical sample spacing and the ηk(n1, n2) is

an additive noise term.

Defining the low resolution image yk(n1, n2) = N1 ×N2.

Each pixel on the low resolution image can be defined as yk = [yk,1, yk,2, yk,3 . . . yk,M ]T

where M = N1N2. If p is the number of observable frames:

y = [yT1 ,y
T
2 ,y

T
3 . . .y

T
p ]T = [y1, y2, y3 . . . ypM ]T (3.8)

where y contains all the observable pixels.

The the discrete model of the scene is defined, in order to relate the high resolution

pictures with the continuous scene:

Figure 3.16: Equivalent discrete observation model illustrating the relationship be-
tween the ideally sampled image z and the observed frames y [6]

In this case too, several modules are defined:

1. Discretization of the continuous scene. Its output z(n1, n2) is discrete but

ideal.
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2. Translation and rotation of the scene.

3. Blurring of the scene due to optics.

4. Downsampling from the high resolution to low resolution.

5. Noise (added by several factors).

The size L1N1 × L2N2 = N where L1 and L2 are positive integers that represent

the size increasing factor horizontally and vertically, respectively.

Putting all the image in an array z = [z1, z2, . . . , zN ]T .

Once again, θk represents the rotation and hk and vk the horizontal and vertical

translations of the k-th observed low resolution frame, creating zk(n1, n2).

Next, the blurring is applied once again:

z̃k(n1, n2) = zk(n1, n2) ∗ hd(n1, n2) (3.9)

Then the high resolution image is downsampled and noise added.

yk(n1, n2) = z̃k(Ln1, Ln2) + ηk(n1, n2) (3.10)

This model can be re-written for all the pixels of all the low resolution frames as:

yk,m =
N∑
r=1

wk,m,r(θk, hk, vk)zr + ηk,m (3.11)
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for m = 1, 2, ...,M and k = 1, 2, ..., p. wk,m,r represents the weight of the r-th high

resolution pixel on the m-th low resolution pixel of the k-th observed frame.

The main problem here is how to calculate those weights. In order to do it, the

system Point Spread Function (PSF) is going to be used, which has 2 components.

• The shape of the detector array.

• The optical transference function of the system.

Figure 3.17: Detector’s model [6]

The detector array model is shown in Figure 3.17.

The detector’s mathematical model is given by

d(x, y) =
1

ab
rect(

x

a
,
y

b
) =


1 for |x/a| < 1/2 and |y/b| < 1/2

0 otherwise

(3.12)
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D(u, v) is defined as:

D(u, v) = F{d(x, y)} (3.13)

Then if u and v are the horizontal and vertical frequencies,

D(u, v) = sinc(au, bv) =
sin(πau)sin(πbv)

π2aubv
(3.14)

The incoherent optical transfer function (OTF) of diffraction-limited optics with

a circular exit pupil can be found as;

Ho(u, v) =


2
π
{cos−1( ρ

ρc
)− ρ

ρc
[1− ( ρ

ρc
)2]1/2} for ρ < ρc

0 otherwise

(3.15)

where ρ = (u2 + v2)1/2 and ρc = 1
λf/#

where f/# is the f number of the optics and

λ is the wavelength to be considered.

So the total system frequency response will be H(u, v) = D(u, v) ∗Ho(u, v) and

the spatial response:

hc(x, y) = F−1{H(u, v)} (3.16)

And the discrete system:
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hd(n1, n2) =
T1T2
L1L2

hc(
n1T1
L1

,
n2T2
L2

) (3.17)

.

In this particular case, f = 2.4, a = b = 1.12× 10−3 mm, λ = 5.5× 10−6 mm and

T1 = T2 = 1.12× 10−3 mm.

This last value has been calculated dividing the sensor size by the number of

pixels and shows that all the pixels are one after the other with no gap between

them.

Of course, it is virtually impossible to calculate the discrete ideal scene z, but it

may be possible to calculate ẑ that is defined as

ẑ = argminC(z) (3.18)

where

C(z) =
1

2

pM∑
m=1

(ym −
N∑
r=1

wm,rzr)
2 +

λ

2

N∑
i=1

(
N∑
j=1

αi,jzj)
2 (3.19)

The first term of C(z) represents the difference the observed low resolution pic-

tures and the downsampled versions of the high resolution image. Of course, if the

data in the high resolution image contains information from all the low resolution

frames and the weights are correctly selected, theoretically it would be possible to

25



reconstruct the low resolution images from the high resolution one, making this term

0. Nevertheless, in reality there could be several images that could minimize this

term due to the ill-posed nature of the inverse problem. In order to solve this, the

second term was created, to regularize the result, where λ represents the weight of

the second term. αi,j is such that it will be minimized when the result is smooth,

meaning that there will be little high resolution noise. αi,j is defined as

αi,j =


1 for i = j

−1/4 for j : zj is a cardinal neighbor of zi

(3.20)

In order to optimize the cost term the first step is to differentiate the cost term

for each one of the pixels zk for k = 1, 2, 3 . . . , N

gk(z) =
∂C(z)

∂zk
=

pM∑
m=1

wm,k(
N∑
r=1

wm,rzr − ym) + λ
N∑
i=1

αi,k(
N∑
j=1

αi,jzj) (3.21)

In order to have the differentiation of all the pixels in one variable,

gn =



g1(ẑ
n)

g2(ẑ
n)

...

gN(ẑn)


(3.22)

Now the conjugate gradient vector can be defined as:
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dn+1 = −gn+1 + βndn (3.23)

where

βn =
(gn+1)Tgn=1

(gn)Tgn
(3.24)

and

d0 = −g0 (3.25)

Now iterative process can be defined as:

ẑn+1 = ẑn + εndn (3.26)

Where ε can be defined as the optimal step size obtained by minimizing C(ẑn+1) =

C(ẑn + εndn) which yields to

εn = −
∑pM

m=1 φm(
∑N

r=1wm,rẑr
n − ym) + λ

∑N
i=1 d̄i(

∑N
j=1 αi,j ẑj)∑pM

m=1 φ
2
m + λ

∑N
i=1 d̄i

2 (3.27)

where
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φm =
N∑
r=1

wm,rdr(ẑ
n) (3.28)

and

d̄i =
N∑
j=1

αi,jdj(ẑ
n) (3.29)

Before starting the iterations some kind of high resolution image ẑ0 will be needed.

This image could be obtained by taking the interpolation of one of the frames.

As an example, the images from Figure 3.14 were used with 10 iterations. In

Figure 3.18 the estimated high resolution image, ẑ10 ≈ z was calculated

Figure 3.18: Iterative process’ result
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3.2 Non-homogeneous illumination correction

It is well known that optical images are often affected by inhomogeneous illumination.

More specifically, it is known that at the center of the image, the illumination is higher

than at the edges. As it can be seen in Figure 3.19, in the center of the image, the

illumination is homogeneous, but it can clearly be seen that the top right corner is

darker than in the center. The device that is used to take the images has some LEDs

that are used to illuminate the skin but it makes the center of the image (where the

useful information about the lesion is) brighter.

Figure 3.19: Melanoma with nonhomogeneous illumination

Nevertheless melanoma detection is done by looking for some features on the

image. Some of those features could be affected by the nonhomogeneous illumination

of the image [37], and this could make the algorithm to detect melanoma features on

a healthy mole and the other way around.

The first thing that needs to be done to understand this well known procedure is

to model the nonhomogeneous illumination [11]. This is why the following equation

is described:
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y(x, y) = u(x, y) ∗ i(x, y) (3.30)

Where y represents the acquired image, u is the illumination mask and i is the

real image without any non-homogeneous illumination problems.

In order to approach the problem, two possible solutions where used:

• Homomorphic filtering.

• Mathematical estimation of the nonhomogeneous illumination.

3.2.1 Homomorphic filtering

Homomorphic filtering is a technique used in image processing to enhance image

contrast and normalize brightness [12]. It requires a mapping of the illumination to

another non-linear domain. Then, after the filter is applied, the result is mapped

back to the linear illumination space. It is used usually with grayscale biomedical

images, such as MRIs and cell pictures.

As it can be seen in Figure 3.20, the illumination is homogeneous after the ho-

momorphic filtering is applied.

Because RGB images are being used, the first step is to transform the image into

a space where the color and the illumination components are separated. After that,

only the illumination component is going to be used.
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Figure 3.20: Right: Before filtering [29], Left: After filtering

In order to separate the illumination component from the color components,

knowing the RGB components:

Y = 0.299R + 0.587G+ 0.114B

U = −0.14713R− 0.28886G+ 0.463B

V = 0.615R− 0.55861G− 0.05639B

(3.31)

where RGB represent the red, green and blue color channels respectively. Also, Y

refer to the illumination and UV to the chrominance. In order to go from Y UV to

RGB the following transformation is used:

R = Y + 1.13983V

G = Y − 0.39465U − 0.5806V

B = Y + 2.03211U

(3.32)

Homomorphic filtering is applied to the illumination component. Consequently
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when the final RGB image is created, the original U and V channels are used,

without any filtering or modification.

In order to perform the homomorphic filtering, the following image model is going

to be used:

I(x, y) = L(x, y) ∗ R(x, y) (3.33)

where I is the image, L is the illumination of the scene and R is the reflectance of

the scene. The first component is based on how the scene is being illuminated and

the second one on how the scene is because of its physical structure, not related to

how it is illuminated. Therefore, this model will work to remove the illumination

nonhomogeneity. The only thing that needs to be completed is to remove the L

component of the image, the illumination.

For now, it is assumed that the illumination is a low frequency component. For

this particular case, the illumination of the scene does not change quickly, but the

image does. This means that the illumination changes slower than the scene. A

melanoma has a lot of small details, meaning that it has high frequency components.

So, it can be said that:

• L has low frequency components

• R has high frequency components

Nevertheless, a problem is faced at this point. Because illumination of the scene
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and the reflectance of the object are multiplying, the space needs to be transformed

before being able to separate both components.

This is why the following transformation is performed:

ln(I(x, y)) = ln(L(x, y) ∗ R(x, y)) = ln(L(x, y)) + ln(R(x, y)) (3.34)

Then, the Fourier transform of both sides is done:

F{ln(I(x, y))} = F{ln(L(x, y)) + ln(R(x, y))} =

F{ln(L(x, y))}+ F{ln(R(x, y))}
(3.35)

Now that both components are separated, a high-pass filter can be applied:

H(u, v) ∗F{ln(I(x, y))} = H(u, v) ∗F{ln(L(x, y)) + ln(R(x, y))} =

= H(u, v) ∗F{ln(L(x, y))}+H(u, v) ∗F{ln(R(x, y))}
(3.36)

where H is the filter and u and v the logarithmic frequencies. Because L only has

low frequencies and R only high frequencies:

H(u, v) ∗F{ln(I(x, y))} = F{ln(R(x, y))} (3.37)

Now applying the transformation back:

eF−1{H(u,v)∗F{ln(I(x,y))}} = eF−1{F{ln(R(x,y))}} = eln(R(x,y)) = R(x, y) (3.38)
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obtaining the image that was wanted.

The algorithm was tested. In order to do it, a synthetic image was created.

Figure 3.21: Synthetic image which contains high and low frequency components
and different colors

Figure 3.21 shows the synthetic image used. It has some high frequency features,

some low frequency features and different colors. This may not be the most accurate

representation of a melanoma, but it is accurate enough to see if the homomorphic

filtering works.

After creating the image, in which illumination is completely homogeneous, some

illumination irregularities were simulated.

Basically 3 types of inhomogeneities were created: horizontal inhomogeneities,

vertical inhomogeneities and circular inhomogeneities.

Because it is assumed that shadows are a multiplicative process, they must also
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be added to the image by multiplying the mask to the image.

In Figures 3.22 and 3.23 two different inhomogeneities masks can be seen.

Figure 3.22: Circular shadow mask

Figure 3.23: Horizontal shadow mask

When the inhomogeneities are added (Figures 3.22 and 3.23) to the original image

(Figure 3.21) the following images (Figures 3.24 and 3.25) are obtained.

After applying the homomorphic filtering, the images obtained can be seen in

Figures 3.26 and 3.27). As it can be seen, the homomorphic filtering does not only
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Figure 3.24: Synthetic melanoma with circular nonhomogeneous illumination mask

correct the mask, but also modifies the color of the background and the inside of the

melanoma. Each effect can be explained separately.

The first one, the color difference that is seen, is due to the fact that the image

is being filtered. In fact if any signal (audio, video, electromagnetic and even an

image) goes through a passive filter, the energy at the output of the filter is always

smaller or equal than the energy at the input of the filter. This is why the images

are darker than what it could be expected.

Nevertheless, it can clearly be seen that in Figures 3.26 and 3.27 there is not only

a change in the illumination pattern but also a ”halo” around the melanoma. This

is due to the fact that the homomorphic filtering has removed the low frequency

components, but on the edges of the melanoma, the illumination pattern changes

quickly.
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Figure 3.25: Synthetic melanoma with horizontal nonhomogeneous illumination
mask

Also, in the center of the melanoma, some of the color is removed. This is due to

the fact that one of the assumptions made was not correct.

It was assumed that the image was separable into two components (Equation 3.33)

and that each of those components had a different origin. Nevertheless, although the

inhomogeneous illumination can be considered as a low frequency component, the

lesion has some high frequency and some low frequency components. What the

homomorphic filtering does is to remove all the low frequency components, including

the ones inside the lesion. This is why the image features are altered and why this

method can not be used to remove the illumination nonhomogeneity.
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Figure 3.26: Result of the homomorphic filtering on a synthetic melanoma with
circular nonhomogeneous illumination mask

3.2.2 Regression model

In the previous method, the inhomogeneous illumination mask was tried to be filtered

[13]. In this method, the mask is going to be approached to a mathematical model,

and then compensated (not removed).

The main idea here is that the image has two components:

I(x, y) = M(x, y) ∗ R(x, y) (3.39)

where I represents the image captured by the camera, M represents the illumination

mask and R represents the real background image without illumination homogeneity.

What it wants to be done is to, somehow, estimate the illumination mask.

It is assumed that M mask is known:
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Figure 3.27: Result of the homomorphic filtering on a synthetic melanoma with
horizontal nonhomogeneous illumination mask

I(x, y)/M(x, y) = M(x, y) ∗ R(x, y)/M(x, y) = R(x, y) (3.40)

In this case, it would be easy to compute the image with homogeneous illumina-

tion.

The problem relies on computing the M illumination mask. This is why some

assumptions were taken:

• The image acquired has a melanoma and healthy skin.

• The healthy skin contains little details.

• The illumination changes slowly.
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Mathematically, the first assumption could be written as

R = M ∪ S and M ∩ S = ∅ (3.41)

where R is the real image without the non-homogeneous illumination, M is the

melanoma and S is the healthy skin. As it can be seen, it is assumed that both sets

are disjointed (no element is in both sets) and the union of both sets creates R (any

element is M or S is in R).

The second assumption says that the pixels that belong to the healthy skin have

mostly high frequency components.

The third one assures that the illumination has low frequency components.

Taking these three assumptions into account and due to the fact that the illumi-

nation mask wants to be computed, the following procedure can be used.

The main concept about this method is that the surrounding healthy skin is going

to be used in order to compute the illumination mask.

The first step is to perform the segmentation of the melanoma and the healthy

skin. In order to do it, a simple threshold method is used, already implemented in

the Melanoma detection application [16].

Once the melanoma and the healthy skin are separated, the next step is to cal-

culate the illumination mask. In order to do it, two different methods were used,

splines and regression models.

It must be taken into account that any method used is going to predict accurately
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the nonhomogeneous illumination mask of the healthy skin, because this has been

the information used to predict the mask. What is interesting and useful is to predict

the nonhomogeneous illumination of the melanoma using the healthy skin.

Splines are piecewise defined curves using polynomials. They were used in a

previous project for calculating the surface of the retina having some points.

The main problem is that splines do not behave well under these requirements.

In the retina surface calculation project [24], the amount of points per retina was

small (around 18 per retina) and the points were almost uniformly distributed along

the retina. This means that the gaps between the points were small, giving little

freedom to the splines to have strange behaviors.

Nevertheless, this case is completely different. In this case, the image has up

to hundreds of thousands of pixels (hundred of thousands of points the image is

considered a set of points in the space) and in the middle of the image there is a

large hole relative to the size of an image.

For this, the tests performed show that the nonhomogeneous illumination mask is

correctly computed for the healthy skin, but not for the melanoma. The assumption

taken was that this happens because splines work well when they are restricted. This

means that they work good for creating curves between given points that are close

to each other. If they are too separated, the spline has too much freedom and the

behavior is no longer the one wanted.

On the other hand, it was tried to fit the healthy skin to a second order 2 dimen-

sional polynomial surface. This means that all the pixels that belong to the healthy
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skin are going to be taken and a shadow mask with the following formula is going to

be calculated:

z(x, y) = a0 + a10x+ a02y + a20x
2 + a11xy + a02y

2 (3.42)

where the values a0, a10, . . . , a02 are chosen in such a way that the difference

between the healthy skin and z(x, y) is minimized.

In order to do this, the fit Matlab function was used. This function allows to do

a regression model using different fit types. Each fit type is a different approach to

do this. In this case, due to the fact that a second order polynomial is used, the fit

type is going to be poly22.

The methods that are not polynomials work well with small gaps between values

and when the gap is surrounded by points. In this case, this does not work, due to

the fact that the gap is significant.

Also, one of the assumptions is that the nonhomogeneous illumination contains

only low frequency components. Other methods, such as interpolation or splines,

work in smaller areas, meaning that they will contain higher frequency components.

Along the polynomials, several tests were performed to see which algorithm to

use. The fit function allows to have different degrees in x and y. As a requirement,

due to symmetry, the degrees of freedom of x and y should be the same. This allows

5 possibilities, due to the fact that the maximum degree of the polynomial for the

fit function is 5 in both dimensions.
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Here, it is useful to think that the illumination mask is a metal surface. Prac-

tically, the higher the degree of the polynomial, the more ”bending” capacity the

surface has. This means that for smooth nonhomogeneous illuminations, the low

degrees of freedom will be good enough to simulate the surface, while high spatial

frequency illuminations will require higher order polynomials. In the same way, the

smaller the degree of the polynomial, the more rigid the surface will be.

Nevertheless, not only the nonhomogeneous illumination of the healthy skin is

desired, but also the illumination of the melanoma. Because the melanoma is not

part of the healthy skin, the nonhomogeneous illumination needs to be computed

from the healthy skin. If the mask computed is too rigid, that means that it is not

going to have the shape of the nonhomogeneous illumination wanted. But, if it is

too flexible, it is going to fit well in the healthy skin, but not on the melanoma. A

similar thing that happened with splines (but not for the same reason).

This is why several tests were done, and as a result it was seen that the best

possible combination was a second grade polynomial.

3.3 Hair removal

The last problem considered during the research has been hair removal in melanoma

images.

Although not as dense and thick as other terrestrial mammals, humans still have

hair all over their skin, sometimes really difficult to see unless a close look to the skin
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is taken. Nevertheless, because the melanoma detection application takes really close

pictures of the skin, in some cases the existing hairs can degrade the performance

of the application. Therefore it was explored the idea of removing the hair from the

pictures of the skin.

The removal of hair from the pictures is not an easy task. The greatest challenge

is that it is easy to remove the hair from some pictures but very difficult to remove

it from others. Not all skin, hair and melanomas are the same, and in some cases

the shape of a hair could look very similar to a feature of a melanoma.

In this particular project, the objective is going to focus on removing long, coarse

black hairs, the most problematic to see through but the easiest type to remove. An

example is seen in the Figure 3.28.

Figure 3.28: Lesion with thick, black hairs [23]

All the hair removal algorithms have 3 steps:
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• Hair detection

• Hair mask correction

• Hair subtraction and hole filling

There are several methods in the literature that can remove hair [1],[27],[40],[2].

The most used one and the one that the community considers the standard is

DullRazor[22]. This method has some advantages and disadvantages compared to

other methods:

Advantages:

• Well known and used since 10+ years

• Easy concept and easy implementation

• Good results with black thick hair

Disadvantages:

• No free code available.

• It does not work with thin bright hair.

In this thesis a modification of DullRazor is going to be used.
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3.3.1 Hair detection

The first step is to detect the hair in the image. This can be done by trying to look

for objects with the shape of a hair, blur the image so that the hair is removed, try

to filter the hair as well as several other methods.

Trying to find structures similar to hair is unpractical, because hair could be

found in different shapes and sizes, so it is difficult to try this approach. Moreover,

in some cases the structure of a certain feature on a melanoma and the structure of

the hair may be similar and the first one wants to be preserved while deleting the

second one.

When the image is blurred (for example using a low pass filter), the high frequency

components of the image are removed and the low frequency ones remain. In the

case that the hair is responsible for the high frequency components and the rest of

the melanoma forms the low frequency components, this approach could be useful.

Nevertheless, this condition is usually not true, and when something like that is done,

some features of the hair remain in the result while some details of the melanoma

are deleted.

This is why DullRazor uses another approach (the same one followed here), which

consist on using image closing. Image closing is defined as:

A •B = (A⊕B)	B

where ⊕ is the dilation and 	 is the erosion operation. In order to use the image
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closing, two elements are needed:

• The image where the closing operation wants to be applied on.

• The structure used to apply the closing operation.

There are several different structures that could be used to perform the closing

operation: disks, rectangles, squares, spheres, octagons or lines. The structure that

resembles hairs most to is a line. Depending on the picture, hairs can grow in any

direction, therefore, several lines have been used: one for the horizontal components

of the hair, another one for vertical components of the hair and two for diagonal

components.

If A is the melanoma image with hair, B is the horizontal line structure, C is

the vertical line structure and D is the diagonal line structure, the operation that is

performed is:

closed image = (((A •B) • C) •D)

With this, the image has been modified in such a way that the hairs are no longer

there, although the rest of the image has been modified too. It must taken into

account that the morphological closing operation can only be applied to grayscale or

binary images. This is why the first step is to convert the image into grayscale, as it

can be seen in Figure 3.29. The result of applying it to the example image is shown

in Figure 3.30.
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Figure 3.29: Grayscale melanoma image with thick, black hairs

The key here is that the hair part has been modified more than the rest of the

image. Because of this, the result can be subtracted and thresholded. If the difference

between the two images is significant, that means that there was an element (probably

a hair) that has been removed. If the difference is small, that probably means that

the image has been modified in a region were there was no hair. In order to see if

a given pixel difference is small or significant, a thresholding method was used. The

first step was to subtract both images (Figure 3.31) and then threshold the result

(3.32).
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Figure 3.30: Morphological close over melanoma image with thick, black hairs

Figure 3.31: Difference of grayscale before and after morphological closing
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Figure 3.32: Thresholding of Figure 3.31
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3.3.2 Mask correction

After this procedure, a binary mask was obtained, with 1s in the pixels that are

considered hair and 0s in the pixels that are considered nonhair. Nevertheless, some-

times it can be seen that the mask contains small artifacts, small groups of pixel

that are considered hair but are not, as seen in Figure 3.32. For example, this could

be found when melanomas have hair-like features. In order to separate those two

features, it can be taken into account that those features are usually small compared

to hairs. Because of this, small groups of pixels were removed from the mask, as seen

in Figure 3.33.

Figure 3.33: Cleaned Figure 3.32

Consequently, only large groups of pixels that the algorithm considers hair were

taken into account. One final problem that was is that some times although the hair

has been correctly detected, the exact boundary between the hair and the skin is

not correct, creating some glitches that could be detected as melanoma features. An

51



example of this error can be found in Figure 3.34.

Figure 3.34: Removed hairs from 3.28 with glitches

In order to solve this, the hair mask is slightly dilated. Dilation could cause some

skin/melanoma to be included as hair, but this is better than having some hairs

detected as healthy skin. The resulting mask can be seen in Figure 3.35.

3.3.3 Gap filling

Once all the above procedures were completed, the final hair mask was obtained

(Figure 3.35). The final step was to fill the gaps that the mask created with something

that could be there(Figure 3.36). However, it is often challenging to determine what

is under the hair. That information has been lost due to the hair. The best it can

be done is to estimate the background.

Here is where DullRazor and the approach taken here differ. While DullRazor
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Figure 3.35: Dilated Figure 3.33

uses interpolation (Figure 3.37) to estimate the background, this approach uses RGB

inpainting [18](Figure 3.38). This method was originally designed to run on a set of

geodesic images.

In order to test the hair removal algorithm, some tests were performed. In those

tests, lesions without hair were used. A random number of hairs uniformly dis-

tributed between 10 and 20, with uniformly random length from 1/4 of the length

of the image to the full length of the image were included. The hair is simulated as

a long, thin black line, with random rotation between 0 and 180 degrees.
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Figure 3.36: Holes to be filled in Figure 3.28

Figure 3.37: Final Figure 3.28 using interpolation
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Figure 3.38: Final Figure 3.28 using inpainting
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Chapter 4

Results

In this chapter the results obtained when the algorithms were tested will be discussed.

In some cases, the tests were done with real lesions. In others, simulated data were

used. Also, in some simulations the results were given by a number, while in others,

the final result is given by an image, which means that the result is subjective.

4.1 Superresolution

The first thing that was done was to test the different superresolution algorithms as

it can be seen in Figure 4.1. The steps followed were:

• Create a synthetic melanoma.

• Simulate low resolution pictures of it.

• Run the superresolution algorithm on the low resolution pictures.

56



Registration algorithms
KE LU MA VA

S
R

al
go

ri
th

m
s

BP 3.518045 3.313514 4.358593 3.671430
IN 2.903766 3.108306 3.941438 3.155352

NC00 2.950938 3.275085 12.347428 3.222609
NC01 2.915055 3.239756 12.352697 3.193301
NC10 2.950938 3.258073 12.339806 3.264585
NC11 2.915055 3.229613 12.343959 3.242935
PG 11.580244 13.568094 12.331405 11.086319
PO 3.821045 13.203370 4.954260 3.666100
RS 3.272063 3.103303 3.690901 3.423080

Table 4.1: RMSE values for different registration and SR algorithms

• Compute the RMSE between the result and the high resolution original.

The RMSE results can be found in 4.1

Figure 4.1: Superresolution testing scheme
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4.1.1 Subjective results

One of the main problems with the research was the lack of data to work with.

There are no libraries with more than a picture for every mole. This is why those

algorithms have been run with acquired data. The data and the results can be found

in appendix ??.

4.2 Non-homogeneous illumination removal

In order to test the non-homogeneous illumination removal algorithm a synthetic

skin lesion was used, which can be seen in Figure 4.3. Using this as a background,

different nonhomogeneous illumination masks were added to this, which can be seen

in Figure 4.4. Finally, the non-homogeneous illumination was removed using the

algorithm and the results compared using RMSE, as it can be seen in Figure 4.2.

The original synthetic image can be seen in Figure 4.3.

Then, the different non-homogeneous illumination masks were added to the orig-

inal synthetic melanoma. In Figure 4.4 circular centered, circular non-centered,

horizontal, vertical and diagonal nonhomogeneous illumination masks can be seen.

The last step was to remove the non-homogeneous illumination. A linear regres-

sion was used as well as different polynomial levels. The results of each one of the

degrees is shown below:

• For the 1st order polynomial: Figure B.1 and Table B.1.
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Figure 4.2: Nonhomogeneous illumination removal testing scheme

• For the 2nd order polynomial: Figure B.2 and Table B.2.

• For the 3rd order polynomial: Figure B.3 and Table B.3.

• For the 4th order polynomial: Figure B.4 and Table B.4.

• For the 5th order polynomial: Figure B.5 and Table B.5.

Results conclude that some of the polynomial degrees are too low to accurately

represent the nonhomogeneous illumination and some of them are too high, creating

strange artifacts.
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Figure 4.3: Synthetic melanoma

As it can be seen, the smallest RMSE belongs to the 2nd order polynomial linear

regression, which means that this is the best choice.

4.3 Hair removal

In order to test the hair removal algorithm, some lesions (melanomas and healthy

skin) were used. Those lesions contain no hair at all. The lesions used can be seen

at Figure 4.5.

With the method explained in Chapter 3, synthetic hair was added to the images.

Because the hair was added randomly, the experiment was repeated 10 times for each

image, in order to see the performance of the algorithm under different circumstances.

A summary of the method can be seen at Figure 4.6. The different outputs can be
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(a) Synthetic melanoma with
circular nonhomogeneous illu-
mination mask

(b) Synthetic melanoma cir-
cular not centered nonhomo-
geneous illumination mask

(c) Synthetic melanoma diag-
onal nonhomogeneous illumi-
nation mask

(d) Synthetic melanoma horizontal nonhomo-
geneous illumination mask

(e) Synthetic melanoma vertical nonhomoge-
neous illumination mask

Figure 4.4: Synthetic melanoma and nonhomogeneous illumination masks
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(a) Reference image 1 (b) Reference image 2 (c) Reference image 3

(d) Reference image 4 (e) Reference image 5 (f) Reference image 6

(g) Reference image 7

Figure 4.5: Reference images with no hair
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seen in Figures 4.7,4.10,4.13,4.16,4.19,4.22 and 4.25.

Figure 4.6: Testing procedure for the hair removal algorithm

After the synthetic hair was added, the hair mask of each image was calculated.

The different outputs can be seen in Figures 4.8,4.11,4.14,4.17,4.20,4.23 and 4.26.

The last step was to remove the hair and fill the gaps. The different outputs can

be seen in Figures 4.9,4.12,4.15,4.18,4.21,4.24 and 4.27.

Here the results of the hair removal algorithm are shown.

4.4 Synthetic hair added
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Figure 4.7: Reference image 1 with synthetic hair

Figure 4.8: Reference image 1 hair masks

Figure 4.9: Reference image 1 without hairs

64



Figure 4.10: Reference image 2 with synthetic hair

Figure 4.11: Reference image 2 hair masks

Figure 4.12: Reference image 2 without hairs
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Figure 4.13: Reference image 3 with synthetic hair

Figure 4.14: Reference image 3 hair masks

Figure 4.15: Reference image 3 without hairs
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Figure 4.16: Reference image 4 with synthetic hair

Figure 4.17: Reference image 4 hair masks

Figure 4.18: Reference image 4 without hairs
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Figure 4.19: Reference image 5 with synthetic hair

Figure 4.20: Reference image 5 hair masks

Figure 4.21: Reference image 5 without hairs
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Figure 4.22: Reference image 6 with synthetic hair

Figure 4.23: Reference image 6 hair masks

Figure 4.24: Reference image 6 without hairs
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Figure 4.25: Reference image 7 with synthetic hair

Figure 4.26: Reference image 7 hair masks

Figure 4.27: Reference image 7 without hairs
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Here, several interesting things can be seen. The first one is that in the majority

of the images, a great amount of hair is removed. The problem is that in some cases,

more specifically where several hairs are together, the algorithms does not recognize

them anymore. As emphasized previously, the algorithm looks for straight lines, not

groups. When several hairs are placed together, it can be seen that the algorithm is

not able to recognize the points were all of them converge, leaving some black dots

on the image.

In order to compare the images, the RMSE was applied between the images with

hair and the originals and the images after the algorithms is used and the originals.

The results can be found in Tables 4.2,4.3,4.4,4.5,4.6,4.7,4.8.

33.7624
5.7472

25.4198
5.7150

23.4250
5.6974

29.7195
5.8004

24.0949
5.6963

35.6652
5.7771

25.1871
6.0043

23.9227
5.7119

32.4035
6.8139

27.3707
5.8434

Table 4.2: RMSE image 1 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

41.8191
6.3608

33.8946
6.0330

33.1547
5.8849

37.0633
5.7906

40.0585
6.0101

31.9551
5.8931

34.9454
5.8795

37.6895
5.8393

32.0395
5.8718

35.2255
6.3754

Table 4.3: RMSE image 2 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

As it can clearly be seen, the images looks more similar after the algorithm has

been used over the image than before. Obviously, it is impossible to be entirely

correct in the prediction, because the information of the skin behind the hair is lost,

but there could be a quite accurate estimation.
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36.2678
3.7792

31.6917
4.1673

36.7476
3.8304

34.6212
3.7893

37.9362
4.3556

31.6208
3.7408

31.7653
3.8539

37.0689
5.7588

29.8855
4.4325

33.0201
3.7858

Table 4.4: RMSE image 3 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

25.9677
4.5681

36.8262
4.7513

33.1023
4.6501

29.4753
4.6348

33.8074
4.6513

36.8868
4.6116

37.1832
5.3635

27.2733
4.7086

38.0916
7.2265

26.5185
4.6006

Table 4.5: RMSE image 4 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

37.4745
4.6120

34.7565
4.5501

37.9652
4.6027

30.3714
4.5172

35.2813
4.8562

44.3522
5.1550

39.4985
6.8499

38.8024
4.5920

33.8238
4.5977

31.0889
4.5555

Table 4.6: RMSE image 5 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

42.8964
9.1067

40.5955
7.0122

44.3718
9.4923

23.6042
6.2391

38.0108
6.3031

37.2091
6.2724

44.6369
6.3776

38.4690
6.2855

34.5453
6.2735

35.7413
6.2853

Table 4.7: RMSE image 6 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...

37.0988
6.25642

41.9952
7.19570

33.2236
6.24984

33.8180
6.25834

43.2664
6.33033

41.0766
6.44751

43.0413
6.32163

38.7811
6.25489

42.2015
8.56239

39.3079
6.27014

Table 4.8: RMSE image 7 before (up inside cell) and after (down inside cell) the
algorithm, for image 1 on the top right corner, image 2 the next one on the right,...
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Chapter 5

Conclusion

This chapter includes a summary of the contributions of this research, as well as

future work and problems found.

5.1 Summary of Contributions and Problems

5.1.1 Superresolution

The first task completed related to superresolution was to test several existing algo-

rithms. It was found that the combination of the Keren estimation algorithm and

Interpolation was the best combination.

However, other approaches were examined, such as an iterative approach.

The problem with the iterative approach was, most likely, that the performance
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of the registration was not good enough and made the iterations divergent, causing

a huge loss in the quality of the images.

5.1.2 Non-homogeneous illumination removal

A non-homogeneous illumination removal was designed, implemented and tested,

showing good results for low frequency illumination.

Nevertheless, it must be taken into account that this algorithm was designed

for low frequency nonhomogeneous illumination only. In some of the tests, when

the illumination had nonlinear patterns and/or the illumination difference was very

strong, the algorithm did not behave as well as expected.

5.1.3 Hair removal

A hair removal algorithm, similar to DullRazor but with a different gap-filling ap-

proach was designed, implemented and tested.

There are two main problems with this algorithm: The first one is that the

algorithm works very well with thick, black hair but its performance with thin, light

hairs has not been tested. Presumably, due to the thresholding step, the performance

is not going to be as good as with thick, black hair. The second issue is that in the

cases where several hairs were close together, the hair is no longer a line and is more

similar to a disk. This is why the morphological closing does not work and creates

some artifacts in some of the images.
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5.2 Future Work

5.2.1 Subpixel registration and memory usage

Regarding the superresolution algorithms, one of the main constrains was that the

algorithms require lots of memory. This is why, in the future, memory saving tech-

niques should be used, to optimize the usage of the computer’s RAM.

Also, it was found that some approaches are very sensitive to errors in the regis-

tration process. Due to the fact that doing subpixel level registration is not a trivial

task, those algorithms show a poor performance. In the future, more work should

be done in improving the performance of those algorithms

5.2.2 High frequency nonhomogeneous illumination removal

and surface correction

Nonhomogeneous illumination removal algorithms work best for low frequency illu-

minations. It would be very interesting to see how it behaves for high frequency

illumination components. One of the possible ways to solve this may be to just

increase the polynomial’s degree, but it has not been tested.
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5.2.3 Thin bright hair removal and detection of groups of

hairs

The hair removal algorithm has been prepared for black, thick hairs. The algorithm

has not been tested for bright, thin hairs, but it will probably not work. Some

modifications in the thresholding step may be required to make it work.

Finally, one of the biggest drawbacks of this algorithm is that it does not recognize

areas were several hairs converge, creating some artifacts. The next step would be

to remove those artifacts.

76



Chapter 6

Budget

6.1 Equipment

The equipment used in this project includes:

• A desktop MAC.

• A desktop PC.

• A laptop computer.

6.2 Expenses

The expenses included:

• engineer salary
hours

× number hours
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• MAC prize
useful life

× number hours

• PC prize
useful life

× number hours

• laptop prize
useful life

× number hours

• Matlab license

The prices are:

• The average starting salary for a Master’s in Telecommunication Engineering

is $59,240 per year. This project has lasted 8 months at 3 hours per day.

• The MAC used in this project was an iMAC 12,1. It costs $1,045. The life

expectancy of the iMAC is 5 years. It was used 4 hours per day during 5

months.

• The PC used in this project was an AMD A10-5800K. It costs $500. The life

expectancy of the PC is 5 years. It was used 4 hours per day during 4 1/2

months.

• The laptop used on this project was an Aspire E1-571G. Its price was $388.

The life expectancy of the laptop is 5 years. It was used 4 hours per day during

9 1/2 months.

• The new Matlab license is $5000 as per year per user.

So the expenses of this project have been:
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• Salary : 59,240
2,086

× 521 = 14, 795.8$

• MAC Amortization : 1,045
14,600

× 326 = 23.33$

• PC Amortization : 500
14,600

× 293 = 10.03$

• Laptop Amortization : 388
14,600

× 521 = 13.84

This project has involved a price of $19,843.
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Appendix A

Algorithms

In this chapter, the pseudocode used for the algorithms is shown. It must be taken

into account that the code has been written in Matlab 2015B, so it may happen

that some of the functions are not explained, because the function is exclusive to a

Matlab 2015B toolbox. The toolbox that was used the most is the Image Processing

Toolbox.

Although in the previous chapter all the methods were explained, here not every

method is going to be shown, but only the final ones, the ones that have been proved

to work best.
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A.1 Superresolution

Data: uint8 RGB melanoma image (x4 or more), factor

Result: uint8 RGB superresolution melanoma image

initialization;

deltaest,phiest←keren(melanomasRGB);

melanomaYUV←RGB2YUV(melanomasRGB.1);

srU←bicubicinterpolation(melanomaYUV.U,factor);

srV←bicubicinterpolation(melanomaYUV.V,factor);

srY←srinterpolation(melanomasRGB,factor);

srRGB←YUV2RGB(srYUV);

return srRGB;

Algorithm 1: Superresolution algorithm
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Data: uint8 RGB melanoma image (x4 or more), factor

Result: deltaest, phiest

initialization;

reference←image.1;

for every image starting from the second do

pyramid.3←image;

pyramid.2←resize(pyramid.3,0.5);

pyramid.1←resize(pyramid.2,0.5);

for every pyramid level do

d/dy←computeddy(level);

d/dx←computeddx(level);

df1/dx←computedf1dx(level);

df1/dy←computedf1dy(level);

df1/dy*xdf1/dx*y←computedf1dyxdf1dxy(level);

while parameter difference not small do

a←computea(parameters);

b←computeb(parameters);

θ ←computeθ();

end

if not last level then

sendabθtonextpyrlevel();

end

end

end

return a,b,θ;

Algorithm 2: Keren’s registration estimation algorithm
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Data: uint8 RGB melanoma image (x4 or more), factor, deltaest, phiest

Result: uint8 RGB superresolution melanoma image

initialization;

for every image do

melanomaY.image←RGB2Y(melanomasRGB.image);

for every pixel do

col.pixel←(rotate(melanomaY.image,phiest.image).pixel.col-

deltaest.image.col);

row.pixel←(rotate(melanomaY.image,phiest.image).pixel.row-

deltaest.image.col);

intensity.pixel=melanomaY.image.pixel.intensity;

end

end

finalsr = griddata(col,row,intensity,desiredpoints(melanomaY,factor));

return finalsr;

Algorithm 3: Superresolution image generation algorithm
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A.2 Non-homogeneous illumination removal

Data: uint8 RGB melanoma image

Result: uint8 RGB Non-homogeneous illumination corrected melanoma

image

initialization;

YUV←RGB2YUV(melanomaRGB);

for every YUV layer do

melmask.layer←segmentation(YUV.layer);

end

melbinarymask←melmask.Y or melmask.U or melamask.V;

illuminationmask←nonhomoilluminationmask(Y,melbinarymask);

desiredillumination←max(illuminationmask);

for every pixel in illuminationmask do

corretionmask.pixel← desiredillumination/illuminationmask.pixel;

end

for every pixel in Y do

Y.pixel← Y.pixel*corretionmask.pixel;

end

finalRGB←YUV2RGB(YUV);

return finalRGB;

Algorithm 4: Illumination correction algorithm
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Data: double RGB melanoma image

Result: double YUV melanoma image

Y←0.299R+0.587G+0.114B;

U←-0.147R-0.298G+0.436B;

V←0.615R-0.515G-0.1B;

return YUV;

Algorithm 5: Illumination color space change from RGB to YUV

Data: double YUV melanoma image

Result: double RGB melanoma image

R←Y+0U+1.14V;

G←Y-0.396U-0.581V;

B←Y+2.029U+0V;

return RGB;

Algorithm 6: Illumination color space change from YUV to RGB
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Data: double Y intensity melanoma image, segmented melanoma

Result: non-homogeneous illumination mask

/* First each one of the coordinates of the grayscale image is

taken into a separate array */

for every pixel that belong to healthy skin do

x.pixel←Y.pixel.x;

y.pixel←Y.pixel.y;

value.pixel←Y.pixel.value;

end

/* Then the fit function is called, which does a linear

regression using the specified model, in this case a 2nd order

2D polynomial */

finalmask=fit(x,y,z,’poly22’);

return finalmask;

Algorithm 7: Illumination color space change from YUV to RGB

A.3 Hair removal

Data: uint8 RGB melanoma image

Result: uint8 RGB melanoma image without hairs

initialization;

binaryhairmask←hair mask(melanomaRGB);

melanomawithnohairs←hole filling(melanomaRGB,binaryhairmask);

return melanomawithnohairs;

Algorithm 8: hair removal algorithm
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Data: uint8 RGB melanoma image

Result: binary hair mask

melanomaGRAY← grayscale(melanomaRGB);

create structuring elements for closing operation;

closed ← melanomaGRAY;

for every structuring element do

closed ← imclose(closed,closing element);

end

abssolutedifference ← abs(closed - melanomaGRAY);

level←20;

binarymask ← zeros;

for every pixel in absolutedifference do

if absolutedifference.pixel>level then

binarymask.pixel←1;

end

end

/* To clean the mask from small groups of pixels */

binarymaskcleaned←bwareaopen(binarymask,50);

/* 50 is the minimum size to be considered hair */

/* To make the mask thicker */

finalmask←imdilate(binarymaskcleaned,1 pixel estructuring element);

/* 1 pixel estructuring element is obtained by calling

strel(’disk’,1), which creates a disk of size 1 */

return finalmask;

Algorithm 9: hair mask
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Data: uint8 RGB melanoma image, binary hair mask

Result: uint8 RGB melanoma image without hairs

for every layer of the RGB image do

/* The first function filles the holes using interpolation.

It is used as a reference for inpaintn */

filled0←regionfill(melanomaRGB.layer, mask);

/* inpaintn algorithm fills the pixels where the value of the

pixes is NaN */

melanomaRGBNaN←melanomaRGB.layer;

for every pixel detected as hair do

melanomaRGBNaN←NaN;

end

melanomanohairs.layer←inpaintn(melanomaRGBNaN,100,filled0);

end

return melanomanohairs;

Algorithm 10: hole filling algorithm
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Appendix B

Illumination correction: regression

Here the results of the illumination correction using linear regression are shown.

B.1 Images
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(a) First order polynomial cir-
cular mask

(b) First order polynomial cir-
cular not centered mask

(c) First order polynomial di-
agonal mask

(d) First order polynomial horizontal mask (e) First order polynomial vertical mask

Figure B.1: Synthetic melanomas with removed non-homogeneous illumination, first
order polynomial
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(a) Second order polynomial
circular mask

(b) Second order polynomial
circular not centered mask

(c) Second order polynomial
diagonal mask

(d) Second order polynomial horizontal mask (e) Second order polynomial vertical mask

Figure B.2: Synthetic melanomas with removed non-homogeneous illumination, sec-
ond order polynomial
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(a) Third order polynomial
circular mask

(b) Third order polynomial
circular not centered mask

(c) Third order polynomial di-
agonal mask

(d) Third order polynomial horizontal mask (e) Third order polynomial vertical mask

Figure B.3: Synthetic melanomas with removed non-homogeneous illumination,
Third order polynomial
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(a) Fourth order polynomial
circular mask

(b) Fourth order polynomial
circular not centered mask

(c) Fourth order polynomial
diagonal mask

(d) Fourth order polynomial horizontal mask (e) Fourth order polynomial vertical mask

Figure B.4: Synthetic melanomas with removed non-homogeneous illumination,
Fourth order polynomial
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(a) Fifth order polynomial cir-
cular mask

(b) Fifth order polynomial
circular not centered mask

(c) Fifth order polynomial di-
agonal mask

(d) Fifth order polynomial horizontal mask (e) Fifth order polynomial vertical mask

Figure B.5: Synthetic melanomas with removed non-homogeneous illumination, Fifth
order polynomial
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B.2 Numerical results

54.3731 56.8492
44.5430 46.5642

28.5885 92.1611
28.5123 89.9647

25.1300 86.2729
24.9917 83.2669

5.7776 77.0055
5.7776 75.3963

6.9397 75.5467
6.9397 73.5753

Table B.1: RMSE between non-homogeneos illuminated synthetic melanoma and
original before (right) and after (left) the algorithm, for just the melanoma(down)
and for the whole image(up): Polynomial 1st order

26.1739 56.8492
21.5826 46.5642

25.0065 92.1611
24.9918 89.9647

16.5265 86.2729
16.5141 83.2669

5.7775 77.0055
5.7775 75.3963

6.9402 75.5467
6.9402 73.5753

Table B.2: RMSE between non-homogeneos illuminated synthetic melanoma and
original before (right) and after (left) the algorithm, for just the melanoma(down)
and for the whole image(up): Polynomial 2nd order

26.3464 56.8492
21.7175 46.5642

42.1201 92.1611
42.0017 89.9647

29.2802 86.2729
29.2788 83.2669

5.7763 77.0055
5.7763 75.3963

6.9362 75.5467
6.9362 73.5753

Table B.3: RMSE between non-homogeneos illuminated synthetic melanoma and
original before (right) and after (left) the algorithm, for just the melanoma(down)
and for the whole image(up): Polynomial 3rd order
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18.7020 56.8492
15.4914 46.5642

73.2195 92.1611
73.1753 89.9647

32.8651 86.2729
32.8647 83.2669

5.9117 77.0055
5.9117 75.3963

6.9369 75.5467
6.9369 73.5753

Table B.4: RMSE between non-homogeneos illuminated synthetic melanoma and
original before (right) and after (left) the algorithm, for just the melanoma(down)
and for the whole image(up): Polynomial 4th order

19.0116 56.8492
15.7404 46.5642

41.9326 92.1611
41.8893 89.9647

60.5686 86.2729
60.5685 83.2669

5.8725 77.0055
5.8725 75.3963

9.9140 75.5467
9.9140 73.5753

Table B.5: RMSE between non-homogeneos illuminated synthetic melanoma and
original before (right) and after (left) the algorithm, for just the melanoma(down)
and for the whole image(up): Polynomial 5th order
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B.3 Subjective results

(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.6: Mole 1 before and after non-homogeneous illumination correction

(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.7: Mole 1 before and after non-homogeneous illumination correction
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(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.8: Mole 1 before and after non-homogeneous illumination correction

(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.9: Mole 1 before and after non-homogeneous illumination correction

(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.10: Mole 1 before and after non-homogeneous illumination correction
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(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.11: Mole 1 before and after non-homogeneous illumination correction

(a) Mole 1 before non-homogeneous illumina-
tion correction

(b) Mole 1 after non-homogeneous illumina-
tion correction

Figure B.12: Mole 1 before and after non-homogeneous illumination correction
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